查看: 708|回复: 0

黑帽seo实战培训_TF-IDF算法排名教学「操作排名」

[复制链接]

2077

主题

2205

帖子

8704

积分

管理员

高级管理员

Rank: 9Rank: 9Rank: 9

积分
8704
发表于 2019-5-16 11:03 | 显示全部楼层 |阅读模式
黑帽seo实战培训_TF-IDF算法排名教学「操作排名」

本黑帽学习网只做免费黑帽SEO培训,永久免费,所有黑帽SEO技巧均不收费,想要学习黑帽SEO的小伙伴,请留意本论坛的黑帽SEO技术文章,在这里你可以免费学到黑帽SEO实战技术。

黑帽SEO是一种将SEO运用到极致的一种技术,本论坛将免费分享众多的黑帽SEO技巧,所以请认真阅读每一篇技术文章,谨献给聪明好学之人,喷子请立马关闭网站,以免对你造成极度不适感。

最近在做一些NLP的研究,由于也是第一次做这个东西,其实还是发现很多有意思的东西。

相信很多做过NLP的人都应该接触过提取关键词的这个功能。现在有很多可以使用的第三方工具包可以很容易的来实现这个功能,比如snowNLP,jieba等,但是我们还是要做到知其然,知其所以然,所以便有了这一篇文字的记录。

首先我们来了解一下什么是TF-IDF?

其实这个是两个词的组合,可以拆分为TF和IDF。

TF(Term Frequency,缩写为TF)也就是词频啦,即一个词在文中出现的次数,统计出来就是词频TF,显而易见,一个词在文章中出现很多次,那么这个词肯定有着很大的作用,但是我们自己实践的话,肯定会看到你统计出来的TF 大都是一些这样的词:‘的’,‘是’这样的词,这样的词显然对我们的分析和统计没有什么帮助,反而有的时候会干扰我们的统计,当然我们需要把这些没有用的词给去掉,现在有很多可以去除这些词的方法,比如使用一些停用词的语料库等。

假设我们把它们都过滤掉了,只考虑剩下的有实际意义的词。这样又会遇到了另一个问题,我们可能发现"中国"、"蜜蜂"、"养殖"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?

显然不是这样。因为"中国"是很常见的词,相对而言,"蜜蜂"和"养殖"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,"蜜蜂"和"养殖"的重要程度要大于"中国",也就是说,在关键词排序上面,"蜜蜂"和"养殖"应该排在"中国"的前面。

所以,我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。

用统计学语言表达,就是在词频的基础上,要对每个词分配一个"重要性"权重。最常见的词("的"、"是"、"在")给予最小的权重,较常见的词("中国")给予较小的权重,较少见的词("蜜蜂"、"养殖")给予较大的权重。这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。

知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。所以,排在最前面的几个词,就是这篇文章的关键词。

1、TF-IDF算法介绍

       TF-IDF(term frequency–inverse document frequency,词频-逆向文件频率)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术。

       TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

       TF-IDF的主要思想是:如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类

(1)TF是词频(Term Frequency)

        词频(TF)表示词条(关键字)在文本中出现的频率。

        这个数字通常会被归一化(一般是词频除以文章总词数), 以防止它偏向长的文件。

        公式: 20180807190429613.png            即: 20180807190512798.png


        其中 ni,j 是该词在文件 dj 中出现的次数,分母则是文件 dj 中所有词汇出现的次数总和;

2) IDF是逆向文件频率(Inverse Document Frequency)

        逆向文件频率 (IDF) :某一特定词语的IDF,可以由总文件数目除以包含该词语的文件的数目,再将得到的商取对数得到。

如果包含词条t的文档越少, IDF越大,则说明词条具有很好的类别区分能力。
   公式:

   其中,|D| 是语料库中的文件总数。 |{j:ti∈dj}| 表示包含词语 ti 的文件数目(即 ni,j≠0 的文件数目)。如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用 1+|{j:ti∈dj}|

        即:


(3)TF-IDF实际上是:TF * IDF

       某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。


       公式:

       注:  TF-IDF算法非常容易理解,并且很容易实现,但是其简单结构并没有考虑词语的语义信息,无法处理一词多义与一义多词的情况。


2、TF-IDF应用

     (1)搜索引擎;(2)关键词提取;(3)文本相似性;(4)文本摘要


3、TF-IDF实战具体应用说明


QQ截图20190516105527.png

从上表可见,"蜜蜂"的TF-IDF值最高,"养殖"其次,"中国"最低。(如果还计算"的"字的TF-IDF,那将是一个极其接近0的值。)所以,如果只选择一个词,"蜜蜂"就是这篇文章的关键词。


除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的TF-IDF,将它们相加,就可以得到整个文档的TF-IDF。这个值最高的文档就是与搜索词最相关的文档。


TF-IDF算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。(一种解决方法是,对全文的第一段和每一段的第一句话,给予较大的权重。)


黑帽SEO总结:


TF-IDF这种算法在谷歌搜索排名应用十分广泛,至于百度,虽然他们不是十分重视,但是在百度官方的培训视频当中,也有工程师对这种算法做了详细讲解,只是起到一定作用,但是发现居然有黑帽SEO培训的站点,居然拿这开始忽悠菜鸟,做收费培训,在这里告诫所有学员,学习SEO排名技术,一定要摆正观念,多看,多学,想要靠别人给你培训学习好快排技术,这种你只有被骗的份,排名是众多知识点的汇总,免费的你都看不懂,学不会,你还想学好,异想天开。

(本文原标题:黑帽seo实战培训_TF-IDF算法排名教学「操作排名」)

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /1 下一条